Attentive Recurrent Comparators

نویسندگان

  • Pranav Shyam
  • Shubham Gupta
  • Ambedkar Dukkipati
چکیده

Rapid learning requires flexible representations to quickly adopt to new evidence. We develop a novel class of models called Attentive Recurrent Comparators (ARCs) that form representations of objects by cycling through them and making observations. Using the representations extracted by ARCs, we develop a way of approximating a dynamic representation space and use it for oneshot learning. In the task of one-shot classification on the Omniglot dataset, we achieve the state of the art performance with an error rate of 1.5%. This represents the first super-human result achieved for this task with a generic model that uses only pixel information.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling Sentence Pairs with Tree-structured Attentive Encoder

We describe an attentive encoder that combines tree-structured recursive neural networks and sequential recurrent neural networks for modelling sentence pairs. Since existing attentive models exert attention on the sequential structure, we propose a way to incorporate attention into the tree topology. Specially, given a pair of sentences, our attentive encoder uses the representation of one sen...

متن کامل

Attentive Language Models

In this paper, we extend Recurrent Neural Network Language Models (RNN-LMs) with an attention mechanism. We show that an Attentive RNN-LM (with 14.5M parameters) achieves a better perplexity than larger RNN-LMs (with 66M parameters) and achieves performance comparable to an ensemble of 10 similar sized RNN-LMs. We also show that an Attentive RNN-LM needs less contextual information to achieve s...

متن کامل

Irony Detection with Attentive Recurrent Neural Networks

Automatic Irony Detection refers to making computer understand the real intentions of human behind the ironic language. Much work has been done using classic machine learning techniques applied on various features. In contrast to sophisticated feature engineering, this paper investigates how the deep learning can be applied to the intended task with the help of word embedding. Three different d...

متن کامل

The distinct modes of vision offered by feedforward and recurrent processing.

An analysis of response latencies shows that when an image is presented to the visual system, neuronal activity is rapidly routed to a large number of visual areas. However, the activity of cortical neurons is not determined by this feedforward sweep alone. Horizontal connections within areas, and higher areas providing feedback, result in dynamic changes in tuning. The differences between feed...

متن کامل

Attentive Convolution

In NLP, convolution neural networks (CNNs) have benefited less than recurrent neural networks (RNNs) from attention mechanisms. We hypothesize that this is because attention in CNNs has been mainly implemented as attentive pooling (i.e., it is applied to pooling) rather than as attentive convolution (i.e., it is integrated into convolution). Convolution is the differentiator of CNNs in that it ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017